

Welcome to IV&V Australia Testing

Newsletter

This e-newsletter provides a practitioner's view of how to manage and perform

SOFTWARE TESTING in today's world.

IN THIS ISSUE – November 2010

1. The devil’s in the details – design your tests before implementing them

2. Upcoming Courses @ IV&V

3. Alice’s Adventures
4. Thought of the day

The devil's in the details ― design your tests before

implementing them

Testers are often critical of developers for not working out the system detailed

design before they start coding. We’ve all seen the tell-tale signs:

 The early drops implement all the “easy” bits, not the difficult

functionality;

 You get software that implements some requirements, but not others that

you thought were closely inter-related; and

 Successive software builds show major changes in functionality and user

interface – even in areas that you thought were stable.

But, I have a sneaking suspicion that many testers are guilty of doing the same

thing – they jump straight into writing detailed test steps before they have

worked out their test design. The most obvious clue to this is missing test cases –

the tests contain detailed actions and expected results, but there is no

explanation of the logic of the tests (that is, what they are trying to prove or

uncover).

Why are test cases important?

These missing test cases serve an important purpose in the thought process that

goes into testing software efficiently and effectively. If you think of your test plan

as being the equivalent of the developer’s system architecture, and your test

steps as being the equivalent of the developer’s code, then the test cases are the

equivalent of the in-between stage of detailed design. As for the developers, it is

important that testers do not skip this stage because it gives us:

 A firm test structure that lets us be certain that we are covering all

requirements;

 A good understanding of when to test related requirements together; and

 Confidence that we can work efficiently, without too much rework when

changes are made (to requirements, to the user interface, or to our tests

as we learn more about the application).

Skipping this thought process and diving straight into the detailed test steps has

a number of adverse consequences:

 You get bogged down – You get side-tracked by the implementation

details and lose sight of what you are trying to prove in the test.

 You can’t see the forest for the trees – When trying to update your tests

(or update someone else’s tests), it is difficult to tell what the button-press

instructions are trying to achieve and what the expected results are meant

to prove, and therefore how to make the required changes.

 You are trying to hit a moving target – To write test steps you need a

known and stable user interface, but as the user interface often changes

throughout development you invariably end up having to rework the test

steps to keep pace.

These consequences result in an inefficient and ineffective use of your testing

time. Too much detail without enough structure conspires to keep you busy with

test documentation instead of letting you get on with the job of testing the

software and providing feedback to the project.

Getting the most from the test design process

A common reason that testers give for skipping the test case design stage is

because “it feels slower” than writing test steps. It is a common reason given for

rushing through planning tasks in general – we just want to get on with what we

perceive as the real work (ie, the implementation). For developers it is coding, for

testers it is test steps.

However, the opposite is actually true – a good set of test cases will help you to

fast-track the testing, while helping to ensure that the testing is as effective as it

can be.

The key is to design early and implement late. That is, as soon as you have a

view of the system functionality and architecture, before you have the software,

you can start thinking about:

 What you need to test;

 What your priorities are; and

 Where the defects might be.

Armed with the requirements, you can design a set of “positive” test cases to

demonstrate that the software works as expected. You can also design a set of

“negative” test cases to try to break the software, by setting up invalid situations.

We write test cases at a relatively high level of detail, with wording like: “This

test case demonstrates that the user can retrieve and display an existing entry in

the database.” Similarly, you can design a negative test case for this

requirement: “This test case demonstrates that an appropriate error message is

displayed when the user attempts to retrieve a non-existing database entry.”

Designing tests at this level of detail helps us to test earlier and have greater

confidence in test coverage:

 Test earlier:

o The wording reflects what the functionality is doing, but because it

does not rely on the implementation, it can be written as soon as

the requirement has been defined.

o It is far quicker to write one liner test cases than to elaborate

detailed test steps

o You can quickly freeplay the test actions from the cases (to provide

early feedback), and then when it seems that the software is

stablising, you can write down your detailed test steps (avoiding

unnecessary rework)

 · Test coverage:

o It is much easier to tell if your set of tests covers all of the

requirements

o It is easier to judge if you have tried enough negative tests to

uncover invalid situations

Because you are avoiding the detail for as long as possible, you can more easily:

 Cope with fluid projects where the implementation keeps changing

 Cope with short deadlines and shrinking timeframes

 Facilitate good review of test coverage.

In conclusion

The key to efficient and effective testing is to concentrate on your test design and

avoid the devilish details for as long as possible:

 As soon as you have a general idea of what the system is and how it will

be implemented, you can start your test planning.

 As soon as you have a reasonably firm idea of the functional specifics, you

can start writing test cases

 With early software drops, just freeplay from the test steps

 Try to hold off writing detailed test steps until you have software, and only

detail the steps for a given test when that functional area has stabilised.

Upcoming Courses @ IV&V

We have a range of courses of the coming months in the following locations:

Sydney

 End to End Software Testing: 8th – 9th December 2010
 Test and Governance: TBA
 Introduction to Scripting: 14th December 2010

Canberra

 Introduction to Scripting: 7th December 2010
 End to End Software Testing: 15th – 16th December 2010

Melbourne

 End to End Software Testing: 10th - 11th February 2011

For more information on each of these courses feel free to contact us at

info@ivvaust.com.au

What is included? All catering (arrival tea/coffee, lunch, morning/afternoon tea),

course notes and interactive examples.

Alice’s Adventures

Alice has been hit with deadlines heading into the silly season rush and will return

soon.

Thought of the day

Software Testers always go to Heaven ... they've already had their share of Hell

FEEDBACK

Have you found this issue useful? We want to hear your comments and

suggestions. Email us at info@ivvaust.com.au.

For more information about IV&V Australia, visit our web site at

http://www.ivvaust.com.au.

If you do not want to receive further correspondence, please respond to

subscribe@ivvaust.com.au with "unsubscribe" in the subject line.

Copyright 2010, IV&V Australia Pty Ltd. All rights reserved. This Newsletter may be freely forwarded in its
entirety. IV&V Australia retains exclusive rights to this work and may not be used in any other way without
the Company's permission.

mailto:info@ivvaust.com.au
mailto:info@ivvaust.com.au?SUBJECT=tNews%20Feedback
http://www.ivvaust.com.au/
mailto:subscribe@ivvaust.com.au

