The independent software testing specialists

Welcome to IV&V Australia Testing
Newsletter

This e-newsletter provides a practitioner's view of how to manage and perform
SOFTWARE TESTING in today's world.

IN THIS ISSUE - November 2010

The devil’s in the details — design your tests before implementing them
Upcoming Courses @ IV&V

Alice’s Adventures

Thought of the day

ANk

The devil's in the details — design your tests before
implementing them

Testers are often critical of developers for not working out the system detailed
design before they start coding. We've all seen the tell-tale signs:

e The early drops implement all the “easy” bits, not the difficult
functionality;

e You get software that implements some requirements, but not others that
you thought were closely inter-related; and

e Successive software builds show major changes in functionality and user
interface - even in areas that you thought were stable.

But, I have a sneaking suspicion that many testers are guilty of doing the same
thing - they jump straight into writing detailed test steps before they have
worked out their test design. The most obvious clue to this is missing test cases -
the tests contain detailed actions and expected results, but there is no
explanation of the logic of the tests (that is, what they are trying to prove or
uncover).

Why are test cases important?

These missing test cases serve an important purpose in the thought process that
goes into testing software efficiently and effectively. If you think of your test plan
as being the equivalent of the developer’s system architecture, and your test
steps as being the equivalent of the developer’s code, then the test cases are the
equivalent of the in-between stage of detailed design. As for the developers, it is
important that testers do not skip this stage because it gives us:

e A firm test structure that lets us be certain that we are covering all
requirements;

e A good understanding of when to test related requirements together; and



e Confidence that we can work efficiently, without too much rework when
changes are made (to requirements, to the user interface, or to our tests
as we learn more about the application).

Skipping this thought process and diving straight into the detailed test steps has
a number of adverse consequences:

e You get bogged down - You get side-tracked by the implementation
details and lose sight of what you are trying to prove in the test.

e You can't see the forest for the trees — When trying to update your tests
(or update someone else’s tests), it is difficult to tell what the button-press
instructions are trying to achieve and what the expected results are meant
to prove, and therefore how to make the required changes.

e You are trying to hit a moving target — To write test steps you need a
known and stable user interface, but as the user interface often changes
throughout development you invariably end up having to rework the test
steps to keep pace.

These consequences result in an inefficient and ineffective use of your testing
time. Too much detail without enough structure conspires to keep you busy with
test documentation instead of letting you get on with the job of testing the
software and providing feedback to the project.

Getting the most from the test design process

A common reason that testers give for skipping the test case design stage is
because "it feels slower” than writing test steps. It is a common reason given for
rushing through planning tasks in general — we just want to get on with what we
perceive as the real work (ie, the implementation). For developers it is coding, for
testers it is test steps.

However, the opposite is actually true — a good set of test cases will help you to
fast-track the testing, while helping to ensure that the testing is as effective as it
can be.

The key is to design early and implement late. That is, as soon as you have a
view of the system functionality and architecture, before you have the software,
you can start thinking about:

e What you need to test;
e What your priorities are; and
e Where the defects might be.

Armed with the requirements, you can design a set of “positive” test cases to
demonstrate that the software works as expected. You can also design a set of
“negative” test cases to try to break the software, by setting up invalid situations.

We write test cases at a relatively high level of detail, with wording like: “This
test case demonstrates that the user can retrieve and display an existing entry in
the database.” Similarly, you can design a negative test case for this
requirement: “This test case demonstrates that an appropriate error message is
displayed when the user attempts to retrieve a non-existing database entry.”

Designing tests at this level of detail helps us to test earlier and have greater
confidence in test coverage:



e Test earlier:

o The wording reflects what the functionality is doing, but because it
does not rely on the implementation, it can be written as soon as
the requirement has been defined.

o Itis far quicker to write one liner test cases than to elaborate
detailed test steps

o You can quickly freeplay the test actions from the cases (to provide
early feedback), and then when it seems that the software is
stablising, you can write down your detailed test steps (avoiding
unnecessary rework)

e - Test coverage:

o It is much easier to tell if your set of tests covers all of the
requirements

o Itis easier to judge if you have tried enough negative tests to
uncover invalid situations

Because you are avoiding the detail for as long as possible, you can more easily:

e Cope with fluid projects where the implementation keeps changing
e Cope with short deadlines and shrinking timeframes
e Facilitate good review of test coverage.

In conclusion

The key to efficient and effective testing is to concentrate on your test design and
avoid the devilish details for as long as possible:

e As soon as you have a general idea of what the system is and how it will
be implemented, you can start your test planning.

e As soon as you have a reasonably firm idea of the functional specifics, you
can start writing test cases

e With early software drops, just freeplay from the test steps
e Try to hold off writing detailed test steps until you have software, and only

detail the steps for a given test when that functional area has stabilised.
Upcoming Courses @ IV&V
We have a range of courses of the coming months in the following locations:
Sydney

e End to End Software Testing: 8th — 9th December 2010
e Test and Governance: TBA
e Introduction to Scripting: 14th December 2010

Canberra

e Introduction to Scripting: 7th December 2010
e End to End Software Testing: 15th - 16th December 2010

Melbourne



e End to End Software Testing: 10th - 11th February 2011

For more information on each of these courses feel free to contact us at
info@ivvaust.com.au

What is included? All catering (arrival tea/coffee, lunch, morning/afternoon tea),
course notes and interactive examples.

Alice’s Adventures

Alice has been hit with deadlines heading into the silly season rush and will return
soon.

Thought of the day

Software Testers always go to Heaven ... they've already had their share of Hell

FEEDBACK

Have you found this issue useful? We want to hear your comments and
suggestions. Email us at info@ivvaust.com.au.

For more information about IV&V Australia, visit our web site at
http://www.ivvaust.com.au.

If you do not want to receive further correspondence, please respond to
subscribe@ivvaust.com.au with "unsubscribe” in the subject line.

Copyright 2010, IV&V Australia Pty Ltd. All rights reserved. This Newsletter may be freely forwarded in its
entirety. IV&V Australia retains exclusive rights to this work and may not be used in any other way without
the Company's permission.


mailto:info@ivvaust.com.au
mailto:info@ivvaust.com.au?SUBJECT=tNews%20Feedback
http://www.ivvaust.com.au/
mailto:subscribe@ivvaust.com.au

