
 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 1 of 4

 IV&V Australia Pty Ltd

Software Unit Testing
Rodney Parkin, IV&V Australia

This paper is an overview of software unit testing. It defines unit testing, and discusses many of the issues which
must be addressed when planning for unit testing. It also makes suggestions for appropriate levels of formality and
thoroughness of unit testing on typical development projects.

What is “Unit Testing”?

The software literature (notably the military

standards) define a unit along the lines of the

smallest collection of code which can be

[usefully] tested. Typically this would be a

source file, a package (as in Ada), or a non-trivial

object class. A hardware development analog

might be a PC board.

Unit Testing is just one of the levels of testing

which go together to make the “big picture” of

testing a system. It complements integration and

system level testing. It should also complement

(rather than compete with) code reviews and

walkthroughs.

Unit testing is generally seen as a “white box” test

class. That is, it is biased to looking at and

evaluating the code as implemented, rather than

evaluating conformance to some set of

requirements.

Why is it important?

For any system of more than trivial complexity, it

is highly inefficient and ineffective to test the

system solely as a “big black box”. Any attempt

to do so quickly gets lost in a mire of assumptions

and potential interactions. The only viable

approach is to perform a hierarchy of tests, with

higher level tests assuming “reasonable and

consistent behaviour” by the lower level

components, and separate lower level tests to

demonstrate these assumptions.

It would be infeasible to test a space shuttle as a

system if you had to simultaneously question the

design of every electrical component. It is

similarly infeasible to test a large software system

as a whole if you have to simultaneously question

whether every line of code, every “if statement”,

was correctly written.

Boris Beizer has defined a progression of levels

of sophistication in software testing. At the

lowest level, testing is considered no different to

debugging. At the higher levels, testing becomes

a mindset which aims to maximise the system

reliability. His approach stresses that you should

“test” in the way which returns the greatest

reliability improvement for resources spent rather

than mindlessly performing some “theoretically

neat” collection of tests.

Experience has shown that unit-level testing (and

reviewing) is very cost effective. It provides a

much greater reliability improvement for

resources expended than system level testing. In

particular, it tends to reveal bugs which are

otherwise insidious and are often catastrophic 

like the strange system crashes that occur in the

field when something unusual happens.

What should it cover?

Just as a system needs to be designed before it

can be effectively implemented, so too must the

system test strategy be designed before it is

implemented. At the same time as the system

concepts are emerging and an architecture is

being worked out, a “test strategy” must also be

developed.

The test strategy should identify the totality of

testing which will be applied to the system  what

types of testing will be performed, and how they

will contribute to the overall quality and

reliability of the product. A good test strategy

will clearly scope each class of test and assign

responsibility for it. Typically an organisation

will have some standard conventions to follow,

but each project must identify aspects of the

system which are critical or problematical, and

clearly identify the how these will be tested and

by whom. Ultimately the Project Plan (or some

form of Master Test Plan) for each project will

define what needs to be covered by unit testing on

that project. This type of information works well

presented in a checklist.

Usually unit testing is primarily focused on the

implementation  Does the code implement what

the designer intended? For each conditional

statement, is the condition correct? Do all the

special cases work correctly? Are error cases

correctly detected?

However many systems have some high-level

requirements which are difficult to adequately test

at a system level, and it is common to identify

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 2 of 4

 IV&V Australia Pty Ltd

these as additional test obligations at the unit-test

level. An example is detailed signal processing

algorithms. These may be fully specified at the

system functional requirements level, but it may

be most efficient to test the details of the

processing at the unit-test level, with system-level

testing being confined to testing the gross flow of

data through the system.

Who should do it?

Because unit testing is primarily focussed on the

implementation, and requires an understanding of

the design intent, it is much more efficiently done

by the designers rather than by independent

testers.

There are some theoretical arguments that it is

better for testing to be done independently.

However, in this case, the lost efficiency in

having an independent person understand the

code and understand the design issues strongly

outweighs any advantages. Beizer’s principal of

applying available resources in the most efficient

way applies. The benefits to be gained by

independence are achieved more easily in a

review or walkthrough forum.

What level of formality is required?

When considering the level of formality required

for unit testing, the sort of questions which arise

are: Do unit tests need a “pre-approved” test

protocol, or is it sufficient for them to be worked

out “as you go”? Is a formal report required? Do

QA need to be involved? Are all results

reviewed?

The level of formality required for unit testing

depends on your “customer” needs. Where

development is being done under a contract with

an external customer, or there are regulatory

requirements to be met, these my impose specific

standards on the project.

Where there are no specific requirements

imposed on the project, it becomes essentially a

tradeoff between project cost and risk. In fact,

the project may choose to keep the level of testing

in some areas quite informal, while other are

more formal.

These questions should be answered as part of the

test planning, and need to be documented in the

project test plan. In most cases there is little

advantage in requiring any more formality than is

required to ensure that adequate attention is being

applied to the task. This may need nothing more

than regular liaison and one-on-one review with

the tester’s team leader.

What type of documentation is
required?

Like the required level of formality, the

appropriate level of documentation for unit

testing varies from project to project, and even

within a project. There may be minimum

standards imposed by outside agencies, but

generally there are not.

The minimum requirements for the

documentation are:

 It must be reviewable. That is, the records

must be sufficient for others to review the

adequacy of the testing.

 It must be sufficient for the tests to be

repeatable. This is important for regression

testing - unless you are sure you can repeat a

test, you can never be sure if you have fixed

the cause of a test failure. Repeatability is

also important for analysing failures  both

failures during the initial testing, and

subsequent failures. Knowing exactly what

was and was not tested, and exactly what

passed and what failed during testing is an

invaluable aid in isolating difficult-to-

reproduce field failures. Repeatability not

only implies the need to record in reasonable

detail how the test is run and what data is

used, but also implies identification of the

version of code under test.

 The records must be archivable. That is, they

must be sufficiently well kept and identified

that they can be found if required, at a later

time (perhaps years later when analysing a

field failure).

For many organisations, separate unit test

documents are not produced. Typically unit

testing will be recorded in controlled lab-books,

or collected into project journals.

One approach which works well for software unit

testing is to use a source code listing with hand

annotations for the recording of tests. Test cases

and data are identified on the listing, with

markups showing which sections of code are

covered by which tests. Typically this listing will

be attached to a review sheet and a checklist of

unit testing requirements, and filed with the

project records.

The documentation method chosen may vary

depending on the criticality, complexity, or risk

associated with the unit. For example, in a

security-critical system, one or more units

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 3 of 4

 IV&V Australia Pty Ltd

associated with the secure interface may be

required to have formally documented unit tests,

while the (non-security critical) bulk of the

system is much less formally documented. These

decisions need to be made early as part of the

initial project test planning and appropriately

recorded.

How “thorough” does it need to be?

In general terms, unit testing should provide

confidence that a unit does not have unpredictable

or inconsistent behaviour, and that it conforms to

all the “design assumptions” that have been made

about it. If this is achieved, then higher-level

testing can concentrate on macroscopic properties

of the system, rather than having to iterate over

numerous possibilities for interaction at the

lowest levels. In choosing tests, the tester should

consider whether it behaves in the way the design

assumes, whether it does this over the full range

of operational possibilities, and whether there are

any “special cases” in its behaviour which are not

visible at a higher level. For each line of code,

the tester should ask “does it achieve what it was

put here to do”?

Because unit testing is primarily implementation

driven, its thoroughness is usually measured by

code coverage. Tools are available which will

evaluate code coverage while tests are being run,

but generally someone familiar with the code,

while focussed on a particular unit, will find it

quite easy to determine the coverage of a

particular set of tests. Various “measures” of

coverage can be defined, such as “statement

coverage” (each statement executed at least

once), “decision coverage” (each conditional

statement executed at least once each way), and

so on.

Like documentation, the level of thoroughness

required for unit testing may depend on the

criticality, complexity, or risk associated with the

unit. For example, safety or security-critical units

may be subjected to much more extensive unit

testing than non-critical screen-formatting code.

Some projects use metrics such as McCabe

Cyclomatic Complexity to pre-determine the

appropriate level  units with a high complexity

are required to have a greater degree of testing.

Again a policy on test rigour needs to be

determined as part of the early project test

planning.

For typical projects, the usual standard is to aim

for “decision coverage”. That is, unit testing

must demonstrate correct operation over a range

of cases which require every statement to be

executed at least once, and every conditional

statement to go each way. In addition, all

“boundary cases” must be exercised. In actual

practice, 100% coverage can be surprisingly

difficult to achieve for well-written code. This is

because there will be code to protect against

“should not occur” scenarios, which can be very

awkward to exercise. A code coverage standard

may concede coverage of these cases so long as

they are adequately desk-reviewed.

What “test environment” should be
used?

As a general rule of thumb “the rest of the system

is the best test harness” for unit testing.

Performing unit tests in a system environment

maximises your likelihood of identifying

problems. On the other hand, the tester should

not allow this “rule” to limit or hinder their

testing. They should use the rest of the system to

generate and analyse test scenarios, but should

not feel constrained from intruding into the

system with debuggers, special test code, or other

aids.

Some people feel that for testing to be valid, it

must be performed on exactly the code to be

delivered, running exactly in its final

environment. Although this is appropriate for

final acceptance testing at the system level, it can

actually be counter-productive at the lower levels.

At the unit test level it is far preferable to “put in

some debug statements” to help perform a

particular test, than to avoid the test altogether in

a mistaken attempt to ensure fidelity.

It is often easy to make the system an almost ideal

test harness. For example, removing restrictions

on selectable system parameters when in a

“system test mode” may make it trivial to force

otherwise difficult “should not occur” special

cases. Providing a capability to inject arbitrary

byte sequence for internal messages may be

trivial to implement buy extremely useful for

testing. When considered early in the design

process, these sorts of capabilities are often trivial

to provide.

Conclusions

Software unit testing is an integral part of an

efficient and effective strategy for testing systems.

It is best performed by the designer of the code

under test.

The appropriate level of formality and

thoroughness of the testing will vary from project

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 4 of 4

 IV&V Australia Pty Ltd

to project, and even within a project depending

on the criticality, complexity, and risk associated

with the unit. The policy in this regard should be

decided early in test planning, and documented,

usually in the Project Plan or separate Master

Test Plan.

In most cases it is acceptable to adopt an

approach which requires little documentation

overhead. However there are some basic

requirements which should always be met. In

particular it must be reviewable, repeatable, and

archivable. Commonly, unit testing will be

recorded in labbooks, or in hand-written notes on

code listings stored in the project journal, with

guidance provided by a checklist that identifies

the required unit testing activities.

Some issues which should be considered when

evaluating a unit testing strategy are:

 Has a policy with regards formality,

documentation, and coverage been

determined early enough in the project?

 Does it relate to other levels of testing to give

an efficient and effective overall strategy?

 Have the needs of units which are

particularly critical, complex, or risky been

considered?

 Will the documentation be reviewable,

repeatable, and archivable?

Questions which should be considered when

evaluating unit testing for adequacy include:

 Have all statements been exercised by at least

one test?

 Has each conditional statement been

exercised at least once each way by the tests?

 Have all boundary cases been exercised?

 Were any design assumptions made about the

operation of this unit? Have the tests

demonstrated these assumptions?

 Have the tests exercised the unit over the full

range of operational conditions it is expected

to address?

