IV&V Australia

The independent software testing specialists

o

What Happens When You Don’t Have a Test Plan?

By: Donna O’Neill, IV&V Australia

Software companies can no longer afford to develop and test their systems on an ad-hoc basis. Without a defined
testing strategy, companies will get left behind in the increasingly sophisticated world of software development.

A well-defined test methodology will help to ensure that companies develop their products in the most efficient and

cost-effective manner.

When a project does not identify its overall approach to testing, there is no end to the number of problems that can

arise. This paper:
e Identifies the four most commonly seen problems

e Highlights the effects that these problems can have on a project
e Discusses some ways to fix these problems (or to avoid having them in the first place).

What is strategic test planning?

Most projects develop software test plans.
However, these plans usually only identify the
testing that will be conducted by the Test Team
on a particular part of the system or for an
incremental release. They do not produce a plan
that takes a “big picture” view of the project’s
approach to testing.

Software Test Plans do not usually identify:

e The way in which the testing conducted by
the Development Team fits in with the
testing conducted by the Test Team

e The strategy for progressing the software
and the tests from one build/release to the
next (including regression testing)

e The approach to the test environment that
identifies the progression of testing on an
artificial development environment through
to testing on the deliverable system.

Strategic test planning provides a mechanism for
ensuring that:

e The testing effort is applied throughout the
development cycle to maximise test coverage

e The test program facilitates and
demonstrates progress towards completion

e There are clear objectives for documents and
tests

e Teams do not spend time writing documents
when they could be testing software.

Where do you document test strategies?

Project Managers and Test Managers engage in
strategic test planning to help their teams conduct
test activities in the most efficient and effective
way possible. To that end, documenting the test
strategy should not add to the documentation
burden.

The information should be clear and to the point,
using process diagrams, tables and checklists to
convey information.

The strategies can be presented in several ways:

e As part of another project document (eg, a
Software Development Plan)

e A separate formal project document (eg, a
Master Test Plan, Test & Evaluation Master
Plan, or Test & Evaluation Program Plan)

e An informal project document (eg, How We
Do Testing, Tester’s Survival Guide)

Separate formal documents are favoured by most
new projects for Defence applications. Informal
project documents are favoured by commercial
projects that are not required to deliver a strategic
plan to an outside customer. There is no reason
why all three approaches cannot be reasonably
similar, and equally useful.

For the purpose of this paper, the term Master
Test Plan will be used.

What happens when you don’t have a
test plan?

When a project does not have an overview
document to tie the testing process together, there
tends to be no process. This results in issues
falling through the cracks or being duplicated
unnecessarily.

The four most commonly seen problems are as
follows:

No clearly defined roles and responsibilities
No clear test objectives

Il-defined test documents

No strong feedback loop.

What Happens When You Don’t Have a Test Plan?

Page 1 of 4

© V&V Australia Pty Ltd

IV&V Australia @
The independent software testing specialists

¥

responsibilities as early as possible. This can be
done by developing checklists to scope the tasks
and by diagramming processes. Even just simple
tables with the responsibilities for doing the tasks,

Problem 1. No clearly defined roles
and responsibilities

The Effects

When a project does not have a Master Test Plan,
where the roles and responsibilities between and
within teams are identified, important tasks often
get left undone. This is primarily because there is
no “ownership” of the tasks.

For a test team, this is most obvious during
Reviews of documents and activities:

o No one allocates enough time to do them

e No one makes sure all aspects of the task or
document are reviewed

e No one makes sure the purpose of the review
is served before moving on to the next task
(ie, that the entry and exit criteria for the
review has been met)

e No one makes sure that review action items
are created and/or addressed.

This can be seen on all parts of a project,
however given that the testing activities tend to
follow development activities, the impact of poor
reviewing is greater during testing.

When roles and responsibilities are not defined,
tasks often end up being done in an inefficient
manner, by people who are not best qualified to
do the job.

This often occurs with unit/module testing, where
developers think that because there is a separate
“test” team, they do not have to do any testing
themselves. Obviously, they are wrong.
Furthermore, they are costing the project time and
money.

Both white-box testing of the code and black-box
testing of requirements must take place to ensure
adequate test coverage. The developers are best
qualified to conduct white-box testing, since they
are closer to the code. This allows the testers to
remain as independent of the design as possible,
so they can evaluate the system objectively, from
a user’s perspective.

In addition, misunderstandings of who is
supposed to do what tasks leads to an Us vs Them
attitude, and alienation between individuals and
project teams.

The Solution

The best way to eliminate confusion about who is
supposed to do what, is to clearly define roles and

reviewing the results, and accepting that the task
is complete can help considerably.

It will not be possible to foresee every task that
will come up throughout the development
lifecycle. However there are tasks that always
occur and always require interaction between
teams, for which roles and responsibilities can be
defined in a Master Test Plan. These include:

Requirements analysis

Unit/module testing

Integration

Software handover from development to test
Functional/system testing

e Problem reporting

e Final acceptance or system delivery.

Problem 2: No clear test objectives

The Effects

When a project does not have a Master Test Plan,
project teams do not usually have a clear
understanding of the different types of testing that
should be done on a system, and the reasons for
doing the different types of tests.

Without clear objectives for running tests, there is
an increased likelihood that critical and essential
system characteristics will not be adequately
tested. This ties in with roles and responsibilities
for doing tasks. Each test level serves a particular
purpose. If this purpose is not well understood
and tied together in a systematic way, tests tend to
be ad-hoc, with unnecessary overlaps as well as
gaps in coverage.

Projects end up with developers doing the same
type of testing as testers, and worse, no one doing
some essential type of tests. Developers and
testers spend inordinate amounts of time finding
problems that clearly-directed testing would have
found the first time through.

Also, without a clear “driver” for each type of
testing, it will be very difficult to measure how far
the task has progressed. If you don’t have a goal,
how do you know when you are finished?

The Solution

To ensure that test coverage is done most
efficiently and effectively at all levels, it is
essential to look at the big picture. Determine all

What Happens When You Don’t Have a Test Plan?

Page 2 of 4

© IV&V Australia Pty Ltd

IV&V Australia

The independent software testing specialists

o

¥

of the different types of tests that should be done
on the system, and clearly identify:

e The objectives for testing at each level
e The entry and exit criteria for each test level

e Who is responsible for doing the tests,
reviewing the tests and results, and
accepting that the software has successfully
passed through the test level and is ready for
the next level.

Examples of test objectives may include:

e Execute all lines of code (or paths) for
unit/module testing

o Demonstrate all requirements for functional
testing

o Exercise all interfaces for integration testing.

The following information should be included in
a Master Test Plan to define each level of testing.

e Purpose
e Test objective(s)
e Responsibility
e Methodology
Tasks
Types of tests to be performed
Referenced procedures
e Documentation
o Relationship to other test activities
e Completion criteria.

Problem 3: lll-defined test documents

The Effects

When a Master Test Plan does not identify the
role of each test document, projects often do not
have a clear understanding of how and why to
write the different documents.

As with test levels, each test document serves a
particular purpose. If this purpose is not well
understood and the documents are not tied
together in a systematic way, the test documents
tend to be incomplete and ad-hoc (and very
inefficient). This can lead to an ad-hoc and
inefficient test process.

Even when projects use documentation standards
as a basis for writing documents, strategic
information is often omitted in favour of slavish
adherence to section headings. This missing
information often includes:

e Strategic overviews
e Test design rationale.

These documents pass the “weight test”, but
never really tell the reader how well the system is
being tested.

This can be seen particularly on projects that
attempt to automate their test documents. They
load all of their requirements into a database, and
then to use the database to allocate requirements
to tests. They churn out vast quantities of details
about a test, without ever providing a clear
overview on what the testing effort is trying to
achieve, and why it is trying to achieve it.

While testing activities lend themselves very well
to automation, too often manipulating the
database is used as a substitute for actually using
your brain to design tests. People design tests.
Databases are only a tool.

The Solution

Identify the purpose and scope of each test
document, and establish design criteria for tests,
test cases and test procedures. Include this
information in the Master Test Plan, then make
sure that this strategy is used when writing the
documents.

Good test documents reflect the structure of the
requirements specifications (assuming, of course,
that the requirement specifications are good).
Tests should correspond to functional capabilities
(ie, groups of related requirements) and test steps
should correspond directly to requirements.

Document templates and checklists can help to
ensure that the strategy is consistently followed
across the whole team. They can eliminate some
of the burden associated with writing documents
by providing guidance on what the documents
should contain and where to obtain the
information.

Checklists are also a useful tool for reviewing the
documents. If a document successfully meets the
criteria in the checklist, the review can be deemed
to have been passed and the team may proceed to
the next task without risk of having to revisit the
completed task.

As long as the rationale for writing documents
and tests is clearly understood and communicated
in the test documents, and this is built into the
automation process, test documents can be
automated quite reasonably and to great
advantage.

Use automation wisely. It is no substitute for
good test design and clear presentation of ideas.

The following information should be included in
a Master Test Plan to define each test document:

What Happens When You Don’t Have a Test Plan?

Page 3 of 4

© IV&V Australia Pty Ltd

IV&V Australia

The independent software testing specialists

o

¥

e Purpose of the document

e Scope of the document

e Testing strategy
Test criteria
Test design principles
Requirements tracing

e Information provided

e Standards/DIDs used

e Relationship to other documents
Preceding documents
Following documents

o Reviews

Problem 4: No strong feedback loop

The Effects

Feedback between testers and developers (and
management) is central to the development
process, particularly for project management,
who need to use this process to monitor/measure
progress, schedule and software stability.

Where a Master Test Plan does not identify the
process of Testing — Problem reporting —
Problem resolution — Retesting, this feedback
tends to not occur.

This can be seen in two areas:

e Where the problem reporting/resolution
mechanism is not clear, it is less likely that
all problems will be reported and resolved.

o Lack of data affects the project team’s ability
to measure software quality over time, to plot
the increasing stability (or not) of the
product.

The net result of this is that the product is shipped
with problems, which are always more difficult to
find and costly to fix when the software is in the
field.

This lack of process can also be seen to result in
an increased uncertainty about the roles and
responsibilities of the team members involved in
the loop.

The Solution

Develop a mechanism for raising and
investigating problem reports, resolving the
problems, and retesting the affected software.
This could be documented/diagrammed in a
Master Test Plan, and all team members should
have visibility to it.

The mechanism may involve the use of a problem
management tool, or a test management tool
associated with a suite of test tools already in use.
The key is to increase the visibility of this process
so that it is used to its best advantage in managing
risk.

The plan should include:

e Guidance on how and when to raise problem
reports, to ensure that every observed defect
is recorded

e Samples of the metrics/statistics that should
be maintained by the testers

e Guidance on interpreting the statistics, to
determine software quality and manage the
risk areas

e Guidance on how to go about retesting the
software (including unit/module testing).

Conclusion

The problems identified above are not difficult to
fix. They merely require that Project Managers
and Test Managers stand back and think about the
big picture.

Most projects have individual activities defined
fairly well. What is required, is to identify the
interactions between the activities and between
the teams responsible for completing the
activities.

Managers should remember that one of the
characteristics of a strategic plan is that it is a
“living document”. As the project progresses, and
the tasks and interactions become Dbetter
understood, the plan should be fine-tuned to
reflect this new understanding. If this does not
occur, the document will get added to the
project’s collection of “shelfware” documents that
never serve their once-intended useful purpose.

What Happens When You Don’t Have a Test Plan?

Page 4 of 4

© IV&V Australia Pty Ltd

