
 IV&V Australia
The independent software testing specialists

Surviving Testing Risks – a practitioner’s guide Page 1 of 4

 IV&V Australia Pty Ltd

schedule

re
so
ur
ce
s features

Surviving Testing Risks – a practitioner’s guide

By Donna O’Neill, IV&V Australia

Risk management forms a central activity of any project and test management strategy. Test managers must live with test
planning risks and test technical risks on a day to day basis. The key to surviving these risks is to:

 Gain a clear understanding of the factors that contribute to testing risks (both planning and technical)

 Ensure that you have an adequate level of visibility into the progress and effectiveness of the testing effort

 Establish a mechanism for controlling the contributory risk factors and their adverse consequences.

This paper identifies a number of test planning and technical risks that are typically encountered on software development
projects. Suggestions for surviving the risks are presented in terms of the contributing risk factors, the consequences of
the risks, and suggested mitigation strategies.

What is risk management?

Risk management forms a central activity of any

project and test management strategy. It involves

monitoring any number of project areas to identify

whether known risk factors have occurred, and if so,

that appropriate mitigation strategies are in place to

minimise their impact.

Risks to be monitored include requirements, technical

issues, the schedule, personnel skills, and social and

political issues that may affect progress.

Monitoring for risk can be achieved through the use

of reviews, status reports, metrics collection, and a

number of different types of testing.

Metrics collection and schedule monitoring form a

central part of this activity, by providing the facts

required to see trends and highlight missed

dependencies, and to determine whether they may

impact the project’s progress or product quality.

Why is it important to manage risk?

Risk management enables us to foresee and prevent

problems before they occur, or at least reduce the

impact of problems when they inevitably occur.

If managers understand the typical risk areas on a

development project, they can put a mitigation

strategy in place to minimise the risk of problems

occurring, and respond in a timely manner.

The importance of understanding the factors that

contribute to risk applies equally to project,

development and test management, even if the

individual factors and their consequences differ.

What are test planning risks?

Effective test management involves a complex

strategy of coordinating three main planning factors:

 Testing resources

 Test schedule

 Product features.

The changing nature of these

factors, combined with their impact on each other,

produces a set of risks that need to be monitored on a

regular basis. Test managers need to be aware that an

expansion or contraction of one of the factors will

result in the need to adjust the other two factors.

The Test Resource Factors

Testers, testing expertise, and the test environment are

all resources that are all too often in short supply.

Risk: The tester drought. Many projects simply do

not have enough testers to adequately meet their

testing need. Given that most projects have a strong

imperative to adhere to the schedule, they end up

doing less testing (and thus incurring a higher

incidence of faults released to the field).

Where this reduction in testing is inevitable:

 Let the testers get started testing as early as

possible  don’t wait until the end.

 Prioritise requirements to focus the testing effort

on the most critical areas and key functionality.

 Share the testing load across the project through

the use of effective developer-led techniques such

as design reviews, code inspections, and unit tests.

Risk: The expertise drought. Even where projects

have enough people to assign to testing tasks, they

often are not experienced professional testers who

have lived through the full development lifecycle

and/or are familiar with the part of the industry.

Inexperienced testers, or testers who are not familiar

with the technicalities of the system under test, work

more slowly and have a tendency to design relatively

superficial tests that demonstrate what the system is

doing rather than testing what it should do. They are

also reluctant to raise defect reports, because they lack

confidence in their technical judgement. Teamwork

is the key to handling this problem:

 Develop explicit guidelines on how to design and

conduct tests.

 Have experienced testers plan and design the

tests, and have the less experienced testers flesh

out the procedural detail and run the tests.

 Use metrics to provide visibility into how the test

running is going (test run rates) and whether

defects are being logged (defect raising rates).

 IV&V Australia
The independent software testing specialists

Surviving Testing Risks – a practitioner’s guide Page 2 of 4

 IV&V Australia Pty Ltd

 Allow testers to raise issues without fear of being

summarily dismissed, and encourage them to

report facts, not interpretation. Use a filtering

process to sort out software problems (that belong

in a defect database) from tester problems (that

require management support).

Risk: The environment drought. Developers and

testers use their environments differently and with

different objectives. Developers constantly change

and refine the system, whereas testers need to

unambiguously evaluate the state of the system at an

identified point in time.

When the environment is shared between the two

groups, the schedule must consider the interactions

and risk of delays that this may cause. A shared

environment also means that the validity and accuracy

of the test results can not be assured.

In addition, the lack of a realistic end-user

environment creates the risk that system will not

operate correctly when it goes “on-line”, regardless of

how much previous testing has been done.

It is essential that projects allocate enough hardware,

support software, and data to enable the testing to be

done in an isolated, controlled environment. This

includes an environment that accommodates:

 Testing on all required platform types

 Simulating (or using) the number of expected

users and amount of data.

Projects must ensure that they test what they are going

to release and they release what they tested.

Risk: The test tool distraction. Confusion over

when and why to use test automation tools can

seriously affect the success of a testing activity.

Ad-hoc automation without a well-understood

underlying process can cost the project a significant

amount of time and money, and does not result in a

better process. When test automation tools are used

inappropriately, overhead costs are rarely recouped.

Test automation tools should only be applied to

existing, well-understood manual processes, and to

situations where the costs vs benefits are clear. Make

an early decision as to whether test tools are

appropriate to the project. If they are to be used,

integrate them into your process from the beginning.

The Test Schedule Factors

A common characteristic of project/software

development schedules is that they are often

established without first considering testing issues and

the risks associated with testing activities.

Risk: The big-bang approach. Unfortunately, it is

not uncommon in the industry for testing to be left

until the end of the project, just prior to release.

These projects deny themselves the chance to build

quality into their product through the visibility and

control that early and ongoing feedback can provide.

Late testing can lead to overtime work for testers

(leading to burn-out and attrition), schedule chaos

when major defects are found at the last minute, or the

release of poor quality software.

The key to avoiding last-minute schedule chaos is to

employ an incremental end to end testing approach:

 Involve testers in the project early, during the

requirements review process, and start the test

plan immediately afterwards.

 Use an incremental development strategy with

short builds. Release working threads of

functionality to testers early and often.

 Use tester feedback to focus development tasks.

Effective metrics for testers to collect include:

 The number, nature, and severity of defects

found per functional area/test

 The cumulative number of defects raised vs

closed over time (and shown on a graph)

 The number of “fixed” defects that are actually

rejected during retesting.

Risk: The schedule squeeze. Project planners do

not always allocate sufficient time to conduct

adequate testing. This situation worsens when the

inevitable development delays occur, which then eat

into the fixed amount of time allocated for testing.

When combined with a shortage of experienced

testers and a big-bang approach to testing, the results

include hurried, inadequate test coverage, the release

of low quality software, and tester burn-out.

Mitigating these effects requires the same techniques

used for many of the other resource and schedule risk

factors. That is:

 An incremental end to end test methodology

 Focussed testing and test priorities

 Effective developer test and review activities.

The Product Features Factors

One of the most fundamental planning risks that

testers can face is the lack of clear test objectives. For

independent testers, their primary objective is (or

should be) to verify that the requirements have been

met and to validate that the system is fit for purpose.

Risk: The folklore syndrome. When a

development effort is based around poorly defined or

incomplete requirements, the project becomes heavily

reliant on the folklore and domain knowledge that

exists in the organisation. Unfortunately, the keepers

of this knowledge are often reluctant to document it.

Testers, in an attempt to define their objectives, often

try to capture this information themselves, without the

budget for this unplanned work or the skills to do it.

The resulting tests tend to be inefficient and poorly

 IV&V Australia
The independent software testing specialists

Surviving Testing Risks – a practitioner’s guide Page 3 of 4

 IV&V Australia Pty Ltd

directed (rather than systematic) and tend to

demonstrate what the system does rather than what it

should do. Time is wasted in arguments between

teams and customers over differing views of the

product implementation and test results.

It is essential that product requirements are clearly

defined and understood by all parties:

 Enforce the preparation of a requirements

specification (ie, a functional specification).

 Ensure that the specification has been reviewed by

all stakeholders (customers, developers, testers)

for completeness, clarity, testability, etc. A

requirements characteristics checklist can help to

focus this review activity.

 Use requirements tracing techniques to help focus

testing and systematically ensure that all

requirements are covered by tests.

Risk: The moving target. For projects using an

evolutionary development methodology, requirements

change can be a managed and planned activity.

However, on projects that are not using this paradigm,

it is also common for customers to want to add or

change features during development.

While some “requirements creep” is to be expected,

managers need to understand that changes in scope

mean that tests may have to be reworked, new tests

and test data may have to prepared, and more tests

have to be run.

A thorough technical review (and sign-off) of the

initial specification with the customer will reduce the

likelihood of ad-hoc changes. However, when

changes do occur, be sure to trade off the inclusion of

new features/requirements with an increase in the

development and test schedule.

What are test technical risks?

A number of technical factors have direct impact on

the quality of the testing effort. An ineffective and/or

inefficient testing process will increase the risk of the

schedule slipping and the product being released with

an unacceptable (or unknown) level of quality. These

technical risk factors include:

 A reliance on testing done by other teams or

companies

 Dependencies between the test team and other

groups including development and the customer.

 The characteristics of the system/requirements

under development

The Testing Coverage Factors

An effective testing methodology involves the use of

different types of testing, done at different points in

the development, by different teams. How much or

what type of testing to do at each level is dependent

on the testing that occurred before and will follow.

Risk: The shaky foundation. When developers do

not conduct adequate unit testing, the system that is

released to the testers is almost always unstable.

It is not possible to conduct complex and effective

functional and system testing on an unstable system,

and so the product requirements get tested less

thoroughly. Furthermore, the majority of design and

code-level defects will get through to the field

regardless of any extra effort applied to functional

testing (because of the differing focus of the tests).

Developers must understand the critical and unique

role that unit testing plays in the testing lifecycle.

Prior to hand-over to the testers, the developers

should conduct design and code reviews and unit

tests, using checklists to help focus the activities and

optimise their effectiveness. This should ensure a

robust base for independent requirements testing.

Risk: Assumed quality. For systems that are

upgrades to existing systems or are developed using

bought-in/ reused components, the testing strategy

needs to consider the quality history of the

components. Once integrated into the system, the

project takes on the problems of these components.

Component quality should be assessed, through

analysis of prior test results, software inspections,

hands-on testing, and feedback from other users. The

system test strategy should target specific risk areas

such as interfaces and integrated system behaviour.

The Dependencies Factors

One of the biggest contributing factors to testing

mayhem is the reliance of the test group on other parts

of the organisation. Missed dependencies can provide

an early warning of potential problems.

Risk: Dependence on Developers. Testers need to

know, in advance, the order in which functionality is

being developed so that they can plan their test

development schedule. On fixed-length projects, it is

far more effective for testers to design their tests in

advance, to maximise the amount of time they can

spend running tests and providing feedback.

Testers rely on developers to hand over testable

builds, rather than diverse bits of functionality that

cannot be tested until the system is fully integrated. A

failure to receive individually testable builds forces

testers into a big-bang test approach.

Testers also depend on developers to unit test their

software, and correct defects in a timely manner.

The project should undertake a build-planning task, to

determine the build make-up and implementation

order. The project schedule should identify all

dependencies, to quickly signal when testing risks and

compromises are occurring:

 Ensure that build planning feeds into test planning.

 IV&V Australia
The independent software testing specialists

Surviving Testing Risks – a practitioner’s guide Page 4 of 4

 IV&V Australia Pty Ltd

 Plan to start running tests immediately after the

end of unit testing for that functionality.

 Allocate time to run all of the tests one last time

on the “to be released” version of software.

Risk: Dependence on the environment. To

maximise the testing time, the test environment

should be established by the time test running is

scheduled to start (at the very latest). This will enable

the testers to provide feedback to the developers as

quickly as possible.

Plan to complete the test environment set-up task

prior to the start of running tests.

Risk: Dependence on the customer. Projects rely

on the customer (ie, the users) to tell them what they

want the system to do, and to accept the system at the

end of the development.

The user requirements form the basis for the

development of the test procedures. However, if the

requirements are not clearly understood and agreed by

all parties, the scope and schedule of the testing effort

cannot be effectively planned and managed, and the

acceptability of the test results (based on the test

procedures) is at risk.

The project also needs to understand which features

are the most important to the customer. If they get

these features right, the customer will be more eager

to accept the final system (and may even be more

willing to overlook a few minor problems).

Ways to highlight these dependencies include:

 In the project schedule, plan to complete a

user/customer requirements review (and sign-off)

prior to the start of the test planning task.

 Identify a manageable set of requirements that are

most important to the customer. Define these

requirements clearly and plan to demonstrate them

to the customer as early as possible.

 Gain customer agreement that the test procedures

adequately exercise the system under test.

Schedule the review as early as possible, but no

later than the start of the final test run.

The Requirements Characteristics Factors

Risk: The path of least resistance. Developers

have a tendency to implement the “easier”

functionality first, to show early progress. Testers

have the same tendency, for the same reason.

This leaves the “harder” requirements until later,

when there is less time available to effectively deal

with them. Unfortunately, “hard” requirements are

harder because they are more complex and critical to

the operation of the system.

These requirements will take longer to implement and

they will be more prone to defects. They will also be

more difficult and time-consuming to test.

Project and test managers need to:

 Prioritise requirements by (at least) technical and

interface complexity, mission criticality, and

scope of use.

 Plan the development and testing schedule to

implement and test the higher priority

requirements as early as possible.

 Plan to review the tests (and corresponding area of

the design and code) of these requirements more

thoroughly.

 Assign more experienced staff to the higher

priority requirements.

Risk: Fuzzy non-functional requirements. Non-

functional requirements such as quality attributes (eg,

reliability, availability, user friendliness, etc) and

performance objectives can be very difficult to

specify. This means that they are also very difficult to

test. At the same time, these characteristics are

usually very important to the customer.

Testers, in their role of defacto customer liaison on

most projects, are the ones who bear the brunt of the

disagreements that this situation may cause.

The obvious answer is to encourage the authors of the

specification to characterise these attributes in

quantifiable, testable terms. If they will not, or can

not, cooperate, then testers can appeal directly to the

customer, to gain agreement on acceptance criteria for

these requirements. The acceptance criteria will

determine the expected results in the test procedures.

Conclusions

Effective software testing can make an enormous

contribution to the efficient development of quality

products that meet the customer’s needs.

In the real world, however, because this potential is

not well understood, there is never enough time

allocated to testing activities. To get the most out of

their limited testing budgets, it is important that

projects remove the obstacles and smooth the way

ahead of their vital testing tasks.

Projects need to understand and acknowledge that

there are typical planning and technical risks that

always exist. They need to:

 Anticipate the risks

 Eliminate as many as possible before the project

starts

 Put monitoring mechanisms in place to catch the

occurrence of the risks (using schedules and

metrics)

 React as soon as the risk is triggered.

Effective testing risk management techniques can

help to ensure that a quality product is delivered to a

satisfied customer with a minimum of pain.

