IV&V Australia

The independent software testing specialists

o

Surviving Testing Risks — a practitioner’s guide

By Donna O’Neill, IV&V Australia

Risk management forms a central activity of any project and test management strategy. Test managers must live with test
planning risks and test technical risks on a day to day basis. The key to surviving these risks is to:

e Gain a clear understanding of the factors that contribute to testing risks (both planning and technical)
e Ensure that you have an adequate level of visibility into the progress and effectiveness of the testing effort
e Establish a mechanism for controlling the contributory risk factors and their adverse consequences.

This paper identifies a number of test planning and technical risks that are typically encountered on software development
projects. Suggestions for surviving the risks are presented in terms of the contributing risk factors, the consequences of

the risks, and suggested mitigation strategies.

What is risk management?

Risk management forms a central activity of any
project and test management strategy. It involves
monitoring any number of project areas to identify
whether known risk factors have occurred, and if so,
that appropriate mitigation strategies are in place to
minimise their impact.

Risks to be monitored include requirements, technical
issues, the schedule, personnel skills, and social and
political issues that may affect progress.

Monitoring for risk can be achieved through the use
of reviews, status reports, metrics collection, and a
number of different types of testing.

Metrics collection and schedule monitoring form a
central part of this activity, by providing the facts
required to see trends and highlight missed
dependencies, and to determine whether they may
impact the project’s progress or product quality.

Why is it important to manage risk?

Risk management enables us to foresee and prevent
problems before they occur, or at least reduce the
impact of problems when they inevitably occur.

If managers understand the typical risk areas on a
development project, they can put a mitigation
strategy in place to minimise the risk of problems
occurring, and respond in a timely manner.

The importance of understanding the factors that
contribute to risk applies equally to project,
development and test management, even if the
individual factors and their consequences differ.

What are test planning risks?

Effective test management involves a complex
strategy of coordinating three main planning factors:
e Testing resources
e Test schedule

e Product features.

The changing nature of these M

factors, combined with their impact on each other,
produces a set of risks that need to be monitored on a

regular basis. Test managers need to be aware that an
expansion or contraction of one of the factors will
result in the need to adjust the other two factors.

The Test Resource Factors

Testers, testing expertise, and the test environment are
all resources that are all too often in short supply.

Risk: The tester drought. Many projects simply do
not have enough testers to adequately meet their
testing need. Given that most projects have a strong
imperative to adhere to the schedule, they end up
doing less testing (and thus incurring a higher
incidence of faults released to the field).

Where this reduction in testing is inevitable:

o Let the testers get started testing as early as
possible — don’t wait until the end.

o Prioritise requirements to focus the testing effort
on the most critical areas and key functionality.

o Share the testing load across the project through
the use of effective developer-led techniques such
as design reviews, code inspections, and unit tests.

Risk: The expertise drought. Even where projects
have enough people to assign to testing tasks, they
often are not experienced professional testers who
have lived through the full development lifecycle
and/or are familiar with the part of the industry.

Inexperienced testers, or testers who are not familiar
with the technicalities of the system under test, work
more slowly and have a tendency to design relatively
superficial tests that demonstrate what the system is
doing rather than testing what it should do. They are
also reluctant to raise defect reports, because they lack
confidence in their technical judgement. Teamwork
is the key to handling this problem:

o Develop explicit guidelines on how to design and
conduct tests.

e Have experienced testers plan and design the
tests, and have the less experienced testers flesh
out the procedural detail and run the tests.

e Use metrics to provide visibility into how the test
running is going (test run rates) and whether
defects are being logged (defect raising rates).

Surviving Testing Risks — a practitioner’s guide

Page 1 of 4

© IV&V Australia Pty Ltd



IV&V Australia
The independent software testing specialists

od

v

o Allow testers to raise issues without fear of being
summarily dismissed, and encourage them to
report facts, not interpretation. Use a filtering
process to sort out software problems (that belong
in a defect database) from tester problems (that
require management support).

Risk: The environment drought. Developers and
testers use their environments differently and with
different objectives. Developers constantly change
and refine the system, whereas testers need to
unambiguously evaluate the state of the system at an
identified point in time.

When the environment is shared between the two
groups, the schedule must consider the interactions
and risk of delays that this may cause. A shared
environment also means that the validity and accuracy
of the test results can not be assured.

In addition, the lack of a realistic end-user
environment creates the risk that system will not
operate correctly when it goes “on-line”, regardless of
how much previous testing has been done.

It is essential that projects allocate enough hardware,
support software, and data to enable the testing to be
done in an isolated, controlled environment. This
includes an environment that accommodates:

e Testing on all required platform types

e Simulating (or using) the number of expected
users and amount of data.

Projects must ensure that they test what they are going
to release and they release what they tested.

Risk: The test tool distraction. Confusion over
when and why to use test automation tools can
seriously affect the success of a testing activity.

Ad-hoc automation without a well-understood

underlying process can cost the project a significant
amount of time and money, and does not result in a
better process. When test automation tools are used
inappropriately, overhead costs are rarely recouped.

Test automation tools should only be applied to
existing, well-understood manual processes, and to
situations where the costs vs benefits are clear. Make
an early decision as to whether test tools are
appropriate to the project. If they are to be used,
integrate them into your process from the beginning.

The Test Schedule Factors

A common characteristic of project/software
development schedules is that they are often
established without first considering testing issues and
the risks associated with testing activities.

Risk: The big-bang approach. Unfortunately, it is
not uncommon in the industry for testing to be left
until the end of the project, just prior to release.

These projects deny themselves the chance to build
quality into their product through the visibility and
control that early and ongoing feedback can provide.
Late testing can lead to overtime work for testers
(leading to burn-out and attrition), schedule chaos
when major defects are found at the last minute, or the
release of poor quality software.

The key to avoiding last-minute schedule chaos is to
employ an incremental end to end testing approach:

e Involve testers in the project early, during the
requirements review process, and start the test
plan immediately afterwards.

e Use an incremental development strategy with
short builds. Release working threads of
functionality to testers early and often.

o Use tester feedback to focus development tasks.
Effective metrics for testers to collect include:

e The number, nature, and severity of defects
found per functional area/test

e The cumulative number of defects raised vs
closed over time (and shown on a graph)

e The number of “fixed” defects that are actually
rejected during retesting.

Risk: The schedule squeeze. Project planners do
not always allocate sufficient time to conduct
adequate testing. This situation worsens when the
inevitable development delays occur, which then eat
into the fixed amount of time allocated for testing.

When combined with a shortage of experienced
testers and a big-bang approach to testing, the results
include hurried, inadequate test coverage, the release
of low quality software, and tester burn-out.

Mitigating these effects requires the same techniques
used for many of the other resource and schedule risk
factors. That is:

e An incremental end to end test methodology

e Focussed testing and test priorities

o Effective developer test and review activities.

The Product Features Factors

One of the most fundamental planning risks that
testers can face is the lack of clear test objectives. For
independent testers, their primary objective is (or
should be) to verify that the requirements have been
met and to validate that the system is fit for purpose.

Risk: The folklore syndrome. When a
development effort is based around poorly defined or
incomplete requirements, the project becomes heavily
reliant on the folklore and domain knowledge that
exists in the organisation. Unfortunately, the keepers
of this knowledge are often reluctant to document it.

Testers, in an attempt to define their objectives, often
try to capture this information themselves, without the
budget for this unplanned work or the skills to do it.
The resulting tests tend to be inefficient and poorly

Surviving Testing Risks — a practitioner’s guide

Page 2 of 4

© IV&V Australia Pty Ltd



IV&V Australia
The independent software testing specialists

od

v

directed (rather than systematic) and tend to
demonstrate what the system does rather than what it
should do. Time is wasted in arguments between
teams and customers over differing views of the
product implementation and test results.

It is essential that product requirements are clearly
defined and understood by all parties:

o Enforce the preparation of a requirements
specification (ie, a functional specification).

e Ensure that the specification has been reviewed by
all stakeholders (customers, developers, testers)
for completeness, clarity, testability, etc. A
requirements characteristics checklist can help to
focus this review activity.

e Use requirements tracing techniques to help focus
testing and systematically ensure that all
requirements are covered by tests.

Risk: The moving target. For projects using an
evolutionary development methodology, requirements
change can be a managed and planned activity.
However, on projects that are not using this paradigm,
it is also common for customers to want to add or
change features during development.

While some “requirements creep” is to be expected,
managers need to understand that changes in scope
mean that tests may have to be reworked, new tests
and test data may have to prepared, and more tests
have to be run.

A thorough technical review (and sign-off) of the
initial specification with the customer will reduce the
likelihood of ad-hoc changes. However, when
changes do occur, be sure to trade off the inclusion of
new features/requirements with an increase in the
development and test schedule.

What are test technical risks?

A number of technical factors have direct impact on
the quality of the testing effort. An ineffective and/or
inefficient testing process will increase the risk of the
schedule slipping and the product being released with
an unacceptable (or unknown) level of quality. These
technical risk factors include:

o Arreliance on testing done by other teams or
companies

o Dependencies between the test team and other
groups including development and the customer.

e The characteristics of the system/requirements
under development

The Testing Coverage Factors

An effective testing methodology involves the use of
different types of testing, done at different points in
the development, by different teams. How much or
what type of testing to do at each level is dependent
on the testing that occurred before and will follow.

Risk: The shaky foundation. When developers do
not conduct adequate unit testing, the system that is
released to the testers is almost always unstable.

It is not possible to conduct complex and effective
functional and system testing on an unstable system,
and so the product requirements get tested less
thoroughly. Furthermore, the majority of design and
code-level defects will get through to the field
regardless of any extra effort applied to functional
testing (because of the differing focus of the tests).

Developers must understand the critical and unique
role that unit testing plays in the testing lifecycle.
Prior to hand-over to the testers, the developers
should conduct design and code reviews and unit
tests, using checklists to help focus the activities and
optimise their effectiveness. This should ensure a
robust base for independent requirements testing.

Risk: Assumed quality. For systems that are
upgrades to existing systems or are developed using
bought-in/ reused components, the testing strategy
needs to consider the quality history of the
components. Once integrated into the system, the
project takes on the problems of these components.

Component quality should be assessed, through
analysis of prior test results, software inspections,
hands-on testing, and feedback from other users. The
system test strategy should target specific risk areas
such as interfaces and integrated system behaviour.

The Dependencies Factors

One of the biggest contributing factors to testing
mayhem is the reliance of the test group on other parts
of the organisation. Missed dependencies can provide
an early warning of potential problems.

Risk: Dependence on Developers. Testers need to
know, in advance, the order in which functionality is
being developed so that they can plan their test
development schedule. On fixed-length projects, it is
far more effective for testers to design their tests in
advance, to maximise the amount of time they can
spend running tests and providing feedback.

Testers rely on developers to hand over testable
builds, rather than diverse bits of functionality that
cannot be tested until the system is fully integrated. A
failure to receive individually testable builds forces
testers into a big-bang test approach.

Testers also depend on developers to unit test their
software, and correct defects in a timely manner.

The project should undertake a build-planning task, to
determine the build make-up and implementation
order. The project schedule should identify all
dependencies, to quickly signal when testing risks and
compromises are occurring:

e Ensure that build planning feeds into test planning.

Surviving Testing Risks — a practitioner’s guide

Page 3 of 4

© IV&V Australia Pty Ltd



IV&V Australia
The independent software testing specialists

od

v

e Plan to start running tests immediately after the
end of unit testing for that functionality.

e Allocate time to run all of the tests one last time
on the “to be released” version of software.

Risk: Dependence on the environment. To
maximise the testing time, the test environment
should be established by the time test running is
scheduled to start (at the very latest). This will enable
the testers to provide feedback to the developers as
quickly as possible.

Plan to complete the test environment set-up task
prior to the start of running tests.

Risk: Dependence on the customer. Projects rely
on the customer (ie, the users) to tell them what they
want the system to do, and to accept the system at the
end of the development.

The user requirements form the basis for the
development of the test procedures. However, if the
requirements are not clearly understood and agreed by
all parties, the scope and schedule of the testing effort
cannot be effectively planned and managed, and the
acceptability of the test results (based on the test
procedures) is at risk.

The project also needs to understand which features
are the most important to the customer. If they get
these features right, the customer will be more eager
to accept the final system (and may even be more
willing to overlook a few minor problems).

Ways to highlight these dependencies include:

¢ In the project schedule, plan to complete a
user/customer requirements review (and sign-off)
prior to the start of the test planning task.

o Identify a manageable set of requirements that are
most important to the customer. Define these
requirements clearly and plan to demonstrate them
to the customer as early as possible.

e Gain customer agreement that the test procedures
adequately exercise the system under test.
Schedule the review as early as possible, but no
later than the start of the final test run.

The Requirements Characteristics Factors

Risk: The path of least resistance. Developers
have a tendency to implement the “easier”
functionality first, to show early progress. Testers
have the same tendency, for the same reason.

This leaves the “harder” requirements until later,
when there is less time available to effectively deal
with them. Unfortunately, “hard” requirements are
harder because they are more complex and critical to
the operation of the system.

These requirements will take longer to implement and
they will be more prone to defects. They will also be
more difficult and time-consuming to test.

Project and test managers need to:

o Prioritise requirements by (at least) technical and
interface complexity, mission criticality, and
scope of use.

¢ Plan the development and testing schedule to
implement and test the higher priority
requirements as early as possible.

e Plan to review the tests (and corresponding area of
the design and code) of these requirements more
thoroughly.

e Assign more experienced staff to the higher
priority requirements.

Risk: Fuzzy non-functional requirements. Non-
functional requirements such as quality attributes (eg,
reliability, availability, user friendliness, etc) and
performance objectives can be very difficult to
specify. This means that they are also very difficult to
test. At the same time, these characteristics are
usually very important to the customer.

Testers, in their role of defacto customer liaison on
most projects, are the ones who bear the brunt of the
disagreements that this situation may cause.

The obvious answer is to encourage the authors of the
specification to characterise these attributes in
quantifiable, testable terms. If they will not, or can
not, cooperate, then testers can appeal directly to the
customer, to gain agreement on acceptance criteria for
these requirements. The acceptance criteria will
determine the expected results in the test procedures.

Conclusions

Effective software testing can make an enormous
contribution to the efficient development of quality
products that meet the customer’s needs.

In the real world, however, because this potential is
not well understood, there is never enough time
allocated to testing activities. To get the most out of
their limited testing budgets, it is important that
projects remove the obstacles and smooth the way
ahead of their vital testing tasks.

Projects need to understand and acknowledge that
there are typical planning and technical risks that
always exist. They need to:

e Anticipate the risks

e Eliminate as many as possible before the project
starts

e Put monitoring mechanisms in place to catch the
occurrence of the risks (using schedules and
metrics)

¢ React as soon as the risk is triggered.
Effective testing risk management techniques can

help to ensure that a quality product is delivered to a
satisfied customer with a minimum of pain.

Surviving Testing Risks — a practitioner’s guide

Page 4 of 4

© IV&V Australia Pty Ltd



