Is it a Bug?

Lessons learnt from developing safety critical software

Rodney Parkin
IV&V Australia

Overview

« Lessons learnt from developing safety-critical software
» How this relates to software in a more general context

The role of testers and the conflicts they encounter
* An extended “bug” classification with examples of use

Lessons learnt from developlng
safety-critical software

« Safety is not the same thing as Reliability

« The causes of unsafe behaviour include not only:
— Malfunction (ie failure to operate as specified)
.. butalso ...
— Human error
— Operation outside intended conditions
— Unintended environmental interactions
— Inherently unsafe specifications

Lessons learnt from developlng
safety-critical software

» Defining “safe” can be difficult
« “Safety” is a property of systems not software

» Public expectations for safety are far greater than realistically
achievable reliability

Some examples ...

Implantable defibrillator does « Implantable defibrillator shuts

not shock when battery low — down on memory errors — a

an inherently unsafe spec poor response to hardware
error

Vital signs monitor allows + Implantable defibrillator shuts

“alarms disabled” to be saved down on “incidental”

interrogation — a poor
response to operation outside
the intended environment

as startup default — a poor
response to human error

"3

How the lessons learnt can be related to
software in a more general context

Safety is not the same thing as * ‘“Operates desirably”is not the same
Reliability as “Operates as specified”

Causes of unsafe behaviour « Causes of undesirable behaviour
include not only: include not only:

— Malfunction (ie failure to

— Malfunction (ie the traditional
operate as specified) “bug”)

..asalso butalso ...
— Human error — Bad response to user error
— Operation outside intended — Bad response to operation
conditions outside intended conditions
— Unintended environmental — Bad environmental inter-
interactions dependencies
— Inherently unsafe — Inherently bad specifications

specifications

"3

software in a more general context

+ Defining “safe” can be « Fully defining the desired
difficult behaviour can be difficult

» “Safety” is a property of < “Desirable” behaviour is a
systems not software property of systems as a whole,
not just particular software

» Public expectations for
safety are far greater than « User expectations extend well
realistically achievable beyond just performing the
reliability specified functionality

difficult ...

« Specifications are never complete — there are usually implied
requirements:
— The system doesn’t mislead its users
— The system doesn’t impose gratuitous restrictions on its users
— Screens and printouts aren’t visually corrupted
— Screens and printouts don’t have spelling mistakes

« Specifications often have implications which are not initially obvious
— Bad interaction between functions
— Missing functionality
— “Just not right”

Bugs can be related to bad, missing, or implied requirements

L 4

|V&V Australia Pty Ltd__ The indopondent softwaro testing specialists

“Desirable” behaviour is a property of systems
as a whole, not just particular software ...

* “Good"’ software should not make unnecessary assumptions about its
environment

— Performance and availability of hardware
— How other parts of the system are configured

* “Good"’ software should not unnecessarily affect its environment
— Change configuration settings of other software
— Affect operation of other software
— Have additional unintended output

Bugs can be related to poor interaction with the rest of the system

User expectations extend well beyond just
performing the specified functionality ...

* The software should respond gracefully to error
— User error
— Hardware error

* The software should respond gracefully when operated outside its
intended environment or conditions
— Degrade rather than fail
— Warn the user of reduced capability

* The software should fail gracefully
— Visibly and transparently
— With no unnecessary consequential damage

Bugs can be related to poor response to error, misuse, or failure

* However, it often uncovers

* When these are reported, they are

The role of testers

» Functional testing is supposed to

find “bugs” — that is, failures to “It is like that by design”
operate as specified

undesirable characteristics that are The users will never do that”

not specifically related to the spec

often dismissed as “not a bug”, and

outside the role of the tester “You haven't configured it

correctly”

» Testers need a better way to

categorise these problems so that

they are not dismissed Read the user manual

o s 4

“It worked in my environment”

A classification of “bugs

« Non-conformance to spec « Undesirable response to error

— Written specification (the — User error
traditional “bug”) — Hardware error

— Implied specification

« Undesirable response to
misuse
— Unintended use scenarios
— Incorrect configuration

« Specification problem
— Undesirable characteristics
— Missing functionality

» Undesirable system interaction * Undesirable response to
— Sensitivity to system system failure
environment
— Impact on system environment

"3

Some examples ...

A bug reporting system is * A web-based site accepts
designed for intranet use, but credit card payments protected
has no effective security when by SSL, but transactions are
installed in the same way on then forwarded by email
the internet (without security)

- “You weren't supposed to — ‘that’s what it was
do that” designed to do”

Spec problem (undesirable

Undesirable response to
P characteristics)

misuse (incorrect
configuration)

o

Some examples ...

« A multi-user operating system + A test system for some prototype
leaves all open files truncated hardware tests a data bus by
to zero length after a crash reading and writing back static
data, but the test passes even
(even unchanged files) when the data bus is not
— ‘it won't happen in practice” physically connected

Undesirable response to
system failure

— ‘“it’s not possible”

Undesirable response to error
(hardware error)

. 4

Some examples ...

» An application’s installation » An electronic parts vendor
script automatically upgrades provides a catalog on CD, you
Java to a newer version, but have to install it on your

this stops other applications system but it does not have an
from working uninstall

— ‘“the problem is in the other — “you don’t need to uninstall
applications” it”

Undesirable system
interaction (impact on system
environment)

Specification problem
(missing functionality)

Some examples ...

» A web-based application * A Windows application assumes
requiring login expects the only one copy is runmng_at atime,
user to navigate via links on but fails with user switching under
each page, but using the Windows XP
browser “back” button logs the

— ‘it works in my environment”
user out of the web session

Undesirable system interaction
(sensitivity to system
environment)

— ‘the user shouldn’t do that”

Undesirable response to error
(user error)

So ... Is it a Bug?

* Many “bugs” found by functional testing are NOT spec
violations, and are often dismissed as not functional test
issues

« However they can be due to:
— bad, missing, or implied requirements
— bad interaction with the rest of the system
— poor response to error, misuse, or failure

Report them as such!

