
1

1

Is it a Bug?
Lessons learnt from developing safety critical software

Rodney Parkin
IV&V Australia

2

Overview

• Lessons learnt from developing safety-critical software

• How this relates to software in a more general context

• The role of testers and the conflicts they encounter

• An extended “bug” classification with examples of use

3

Lessons learnt from developing 
safety-critical software

• Safety is not the same thing as Reliability

• The causes of unsafe behaviour include not only:
– Malfunction (ie failure to operate as specified)

… but also …
– Human error
– Operation outside intended conditions
– Unintended environmental interactions
– Inherently unsafe specifications

4

Lessons learnt from developing 
safety-critical software

• Defining “safe” can be difficult

• “Safety” is a property of systems not software

• Public expectations for safety are far greater than realistically 
achievable reliability

5

Some examples …

• Implantable defibrillator does 
not shock when battery low –
an inherently unsafe spec

• Vital signs monitor allows 
“alarms disabled” to be saved 
as startup default – a poor 
response to human error

• Implantable defibrillator shuts 
down on memory errors – a 
poor response to hardware 
error

• Implantable defibrillator shuts 
down on “incidental”
interrogation – a poor 
response to operation outside 
the intended environment

6

How the lessons learnt can be related to 
software in a more general context

• Safety is not the same thing as 
Reliability

• Causes of unsafe behaviour 
include not only:
– Malfunction (ie failure to 

operate as specified)
… as also …

– Human error
– Operation outside intended 

conditions
– Unintended environmental 

interactions
– Inherently unsafe 

specifications

• “Operates desirably” is not the same 
as “Operates as specified”

• Causes of undesirable behaviour 
include not only:
– Malfunction (ie the traditional 

“bug”)
… but also …

– Bad response to user error
– Bad response to operation 

outside intended conditions
– Bad environmental inter-

dependencies
– Inherently bad specifications



2

7

How the lessons learnt can be related to 
software in a more general context

• Defining “safe” can be 
difficult

• “Safety” is a property of 
systems not software

• Public expectations for 
safety are far greater than 
realistically achievable 
reliability

• Fully defining the desired 
behaviour can be difficult

• “Desirable” behaviour is a 
property of systems as a whole, 
not just particular software

• User expectations extend well 
beyond just performing the 
specified functionality

8

Fully defining the desired behaviour can be 
difficult …

• Specifications are never complete – there are usually implied
requirements:
– The system doesn’t mislead its users
– The system doesn’t impose gratuitous restrictions on its users
– Screens and printouts aren’t visually corrupted
– Screens and printouts don’t have spelling mistakes

• Specifications often have implications which are not initially obvious
– Bad interaction between functions 
– Missing functionality
– “Just not right”

Bugs can be related to bad, missing, or implied requirements

9

“Desirable” behaviour is a property of systems 
as a whole, not just particular software …

• “Good” software should not make unnecessary assumptions about its 
environment
– Performance and availability of hardware
– How other parts of the system are configured

• “Good” software should not unnecessarily affect its environment
– Change configuration settings of other software
– Affect operation of other software
– Have additional unintended output

Bugs can be related to poor interaction with the rest of the system

10

User expectations extend well beyond just 
performing the specified functionality …

• The software should respond gracefully to error
– User error
– Hardware error

• The software should respond gracefully when operated outside its
intended environment or conditions
– Degrade rather than fail
– Warn the user of reduced capability

• The software should fail gracefully
– Visibly and transparently
– With no unnecessary consequential damage

Bugs can be related to poor response to error, misuse, or failure

11

The role of testers
• Functional testing is supposed to 

find “bugs” – that is, failures to 
operate as specified

• However, it often uncovers 
undesirable characteristics that are 
not specifically related to the spec

• When these are reported, they are 
often dismissed as “not a bug”, and 
outside the role of the tester

• Testers need a better way to 
categorise these problems so that 
they are not dismissed 

“It is like that by design”

“The users will never do that”

“It worked in my environment”

“You haven’t configured it 
correctly”

“Read the user manual”

12

A classification of “bugs”

• Non-conformance to spec
– Written specification (the 

traditional “bug”)
– Implied specification

• Specification problem
– Undesirable characteristics 
– Missing functionality

• Undesirable system interaction
– Sensitivity to system 

environment
– Impact on system environment

• Undesirable response to error
– User error
– Hardware error

• Undesirable response to 
misuse
– Unintended use scenarios
– Incorrect configuration

• Undesirable response to 
system failure



3

13

Some examples …
• A web-based site accepts 

credit card payments protected 
by SSL, but transactions are 
then forwarded by email 
(without security)

– “that’s what it was 
designed to do”

Spec problem (undesirable
characteristics)

• A bug reporting system is 
designed for intranet use, but 
has no effective security when 
installed in the same way on 
the internet

– “You weren’t supposed to 
do that”

Undesirable response to 
misuse (incorrect 

configuration)

14

Some examples …

• A multi-user operating system 
leaves all open files truncated 
to zero length after a crash 
(even unchanged files)

– “it won’t happen in practice”

Undesirable response to 
system failure

• A test system for some prototype 
hardware tests a data bus by 
reading and writing back static 
data, but the test passes even 
when the data bus is not 
physically connected

– “it’s not possible”

Undesirable response to error 
(hardware error)

15

Some examples …

• An application’s installation 
script automatically upgrades 
Java to a newer version, but 
this stops other applications 
from working

– “the problem is in the other 
applications”

Undesirable system 
interaction (impact on system
environment)

• An electronic parts vendor 
provides a catalog on CD, you 
have to install it on your 
system but it does not have an 
uninstall

– “you don’t need to uninstall 
it”

Specification problem 
(missing functionality)

16

Some examples …

• A web-based application 
requiring login expects the 
user to navigate via links on 
each page, but using the 
browser “back” button logs the 
user out of the web session

– “the user shouldn’t do that”

Undesirable response to error 
(user error)

• A Windows application assumes 
only one copy is running at a time, 
but fails with user switching under 
Windows XP

– “it works in my environment”

Undesirable system interaction
(sensitivity to system
environment)

17

So … Is it a Bug?

• Many “bugs” found by functional testing are NOT spec 
violations, and are often dismissed as not functional test 
issues

• However they can be due to:
– bad, missing, or implied requirements
– bad interaction with the rest of the system
– poor response to error, misuse, or failure

Report them as such!


