

Page 1 of 4

Clearing the Testing Minefield

By Donna O’Neill, IV&V Australia

Contact
details

IV&V Australia Pty Ltd
Suite 3A, 10-12 Clarke Street, Crows Nest, NSW, 2065
Phone +61 2 9957 6577; Fax +61 2 9957 1522
Email donnao@ivvaust.com.au; URL http://www.ivvaust.com.au

Abstract

As testers, we constantly have to dodge all sorts of obstacles that get in our way. We never have enough
time to do adequate testing; we rarely have clear requirements on which to base our tests; we battle for our
own test environment, and we beg for robust software that works well enough for us to do meaningful testing.
The list goes on. Our challenge is to ease our way through this minefield, so that we can maximise the time
we spend adding value to the project, and reduce the time we spend responding to non-productive diversions.

This paper will provide some strategies for meeting this challenge and achieving real value-added testing.

What is the testing minefield?

Software testers often spend much of their time

working in a critical phase at the end of the

development lifecycle. This phase lies between the

release of software from development and the final

system delivery to

the customer.

It is during this

phase that testing

is supposed to be

providing its major

contribution to the

project, yet it is also the time when the project is

under the most schedule pressure.

When not managed properly, this phase is like a

minefield, with hidden dangers everywhere.

However, when appropriately managed, the minefield

can be cleared and traversed in safety.

What dangers lie in the minefield?

The testing minefield is littered with obstacles that

conspire to make our job a very difficult one.

To start with, project planners rarely allocate

sufficient time to conduct adequate testing. This

situation worsens when the inevitable development

delays occur, which then eat into the fixed amount of

time allocated for testing.

Testers face the unenviable task of trying to get their

jobs done within an ever-reducing window of

opportunity, compromised by factors such as:

 The big bang approach to testing

 The folklore syndrome of requirements definition

 Fuzzy non-functional requirements

 Assumed quality of components

 The software surprise from developers

 The test environment set-up rush

 The shaky foundation of unstable software

 The path of least resistance.

These factors contribute to hurried, inadequate test

coverage, the release of low quality software, and

tester burn-out.

How can we clear the way (and deal
with the minor explosions)?

The key to efficient and effective testing is to use a

risk-based testing strategy, where you identify in

advance as many of these “gotchas” as possible. Be

open and honest with yourself and your management

about what you can and cannot achieve in the

allocated time and plan your test strategy accordingly.

By understanding the typical testing hazards, we can

foresee and manage them before we reach the

minefield, or at least reduce their impact when they

inevitably occur.

The goal is to do as many up-stream tasks in advance

as possible, to maximise the time you spend actually

testing. This way, you will maximise the

effectiveness of your testing by applying the testing at

the right time in the lifecycle, with the right people

doing the right testing (including developers).

Many of the testing “mines” are essentially

communication issues between test and development

and management. Increasing the visibility of the

testing process, and integrating testing activities

earlier into the development lifecycle, will promote a

greater understanding of the role of testing on

projects. This, in turn, will decrease the diversions

caused by ill-timed and non-productive activities and

thus maximise the likelihood that projects will get the

greatest benefit from the testing activities.

Avoid the big-bang approach

Unfortunately, it is not uncommon in the industry for

all testing to be left until the end of the project, just

prior to release.

These projects deny themselves the chance to build

quality into their product through the visibility and

control that early and ongoing feedback can provide.

Delivery
Project
start

Software
drop

THE MINEFIELD

mailto:donnao@ivvaust.com.au;

Page 2 of 4

Late testing can lead to overtime work for testers

(leading to burn-out and attrition), schedule chaos

when major defects are found at the last minute, or the

release of poor quality software.

The key to avoiding last-minute schedule chaos is to

remove as many tasks as possible from the minefield

phase by employing an incremental end to end testing

approach:

 Involve testers in the project early, during the

requirements review process, and start the test

plan immediately afterwards.

 Use an incremental development strategy with

short builds. Release working threads of

functionality to testers early and often.

 Use tester feedback to focus development tasks.

Effective metrics for testers to collect include:

 The number, nature, and severity of defects

found per functional area/test

 The cumulative number of defects raised vs

closed over time (and shown on a graph)

 The number of “fixed” defects that are actually

rejected during retesting.

Manage the folklore syndrome

When a development effort is based around poorly

defined or incomplete requirements, the project

becomes heavily reliant on the folklore and domain

knowledge that exists in the organisation.

Unfortunately, the keepers of this knowledge are

often reluctant to document it.

Testers, in an attempt to define their objectives, often

try to capture this information themselves, without the

budget for this unplanned work or the skills to do it

well.

Without clear requirements, tests tend to be inefficient

and poorly directed (rather than systematic) and tend

to demonstrate what the system does rather than

verify what it should do. Time is wasted in arguments

between teams and customers over differing views of

the product implementation and test results.

To minimise the impact of the folklore syndrome,

ensure that the requirements are well understood and

agreed, and that all test objectives are clearly defined,

before you enter the minefield phase.

To improve your approach to requirements:

 Encourage the development team to undertake a

systematic requirements gathering activity.

 Ensure that the specification has been reviewed by

all stakeholders (customers, developers, testers)

for completeness, clarity, testability, etc. A

requirements characteristics checklist can help to

focus this review activity.

To define clear test objectives:

 Identify the “test basis” for each level of testing,

so that all tests have clearly defined objectives (eg,

use cases, business rules, functional requirements).

 Use requirements tracing techniques to help focus

testing and ensure that all tests systematically

meet their objectives.

Tie down fuzzy non-functional requirements

Non-functional requirements such as quality attributes

(eg, reliability, availability, user friendliness, etc) and

performance objectives can be very difficult to

specify. This means that they are also very difficult to

test and objectively verify. At the same time, these

characteristics are usually very important to the

customer.

Testers, in their role of defacto customer liaison on

most projects, are the ones who bear the brunt of the

disagreements that this situation may cause. These

disagreements often occur at the end of the project

lifecycle (ie, in the testing minefield) and can cause

costly delays to product release and/or acceptance.

The obvious answer is to encourage the authors of the

specification to characterise these attributes in

quantifiable, testable terms. If they will not, or can

not, cooperate, then testers can appeal directly to the

customer, to gain agreement on acceptance criteria for

these requirements. Technical support staff may also

be a good source of this information, which can then

be used to determine the expected results of the test

procedures.

Do not assume quality components

For systems that are upgrades to existing systems or

are developed using bought-in/re-used components,

the testing strategy needs to consider the quality

history of the components. Once integrated into the

system, the project takes on the problems of these

external components.

Unfortunately, it is very difficult to really know for

certain the true status of re-used or bought-in

components. However, the impact of the problem can

be reduced:

 Component quality should be assessed prior to the

minefield phase, through analysis of prior test

results, analysis of assessment data that was

gathered during the component acquisition

process, software inspections, hands-on testing,

and feedback from other users.

 During system testing, target specific risk areas

such as interfaces and integrated system

behaviour.

Page 3 of 4

Spoil the software surprise

One of the biggest contributing factors to testing

mayhem is the reliance of the test group on other parts

of the organisation.

Testers need to know, in advance of receiving

software, the order in which functionality is being

developed so that they can plan their test development

schedule. Failure to receive some advance notice

forces testers to delay test execution while they

hastily prepare their tests, gather test equipment, and

wait for appropriately skilled testers to be available.

Communication is the key to ensuring that testers

have advance warning of the timing and contents of

software drops. It is far more effective for testers to

design their tests in advance of reaching the minefield

phase, to maximise the amount of time they can spend

running tests and providing feedback.

The software, when it is released, should contain

testable (vertical) slices of functionality so that testing

can commence immediately. If testers only receive

diverse bits of functionality that cannot be tested until

the system is fully integrated, they are forced into a

big-bang test approach or into wasting time on the

construction of throw-away test harnesses.

Avoid the setup rush

One of the most time consuming tasks facing testers is

the establishment of the test environment with the

required hardware, support software, tools and test

data. On many projects, however, testers only begin

this task upon receipt of the software for testing.

This means that valuable testing time is eroded away

by this set-up task. To maximise the testing time, the

test environment should be established by the time

test running is scheduled to start (at the very latest).

This will enable the testers to provide feedback to the

developers as quickly as possible.

Do not build on a shaky foundation

When developers do not conduct adequate unit

testing, the system that is released to the testers is

almost always unstable.

These systems have a tendency to crash unexpectedly

and display other such erratic behaviour. This is

commonly due to poor exception handling or low

level logic errors.

Erratic behaviour makes it very difficult to conduct

effective functional and system testing, and so the

product requirements get tested less thoroughly.

Furthermore, because of the differing focus of the

tests, the majority of design and code-level defects

will get through to the field regardless of any extra

effort applied to functional testing.

Developers must understand the critical and unique

role that unit testing plays in the testing lifecycle.

Prior to hand-over to the testers, the developers

should conduct unit tests (ideally preceded by design

and code reviews), using checklists to help focus the

activities and optimise their effectiveness. This should

ensure a robust base for independent requirements

testing.

Do not settle for the path of least resistance

Developers have a tendency to implement the “easier”

functionality first, to show early progress. Testers

have the same tendency, for the same reason.

This leaves the “harder” requirements until later,

when there is less time available to effectively deal

with them. Unfortunately, “hard” requirements are

harder because they are more complex and critical to

the operation of the system.

These requirements will take longer to implement and

they will be more prone to defects. They will also be

more difficult and time-consuming to test.

Project and test managers need to give themselves

more time to manage high priority/higher risk issues.

As early as possible in the development lifecycle:

 Prioritise requirements by (at least) technical and

interface complexity, mission or safety criticality,

and scope of use.

 Plan the development and testing schedule to

implement and test the higher priority

requirements as early as possible.

 Plan to review the tests (and corresponding area of

the design and code) of these requirements more

thoroughly.

 Assign more experienced staff to the higher

priority requirements.

Conclusions

To find a path through the testing minefield, it is

important to understand what tasks you can and

should start doing right from the beginning of the

project. Apply your effort throughout the

development lifecycle, so that by the time you receive

software for test:

 You have already reviewed and understood the

requirements

 You know what functionality you will be getting

to test, and when

 You have written tests based on clear objectives

(eg, requirements)

 You have set up the test environment with the

required hardware, software and test data

 The software is robust enough to make meaningful

test progress

 You understand the functional priorities, so that

you know where to concentrate your efforts if and

when time is running short.

Page 4 of 4

Until project teams understand how testing fits in with

the development lifecycle, and what the critical

dependencies between teams are, then the testing

minefield will remain a risky place to be.

To effectively clear the testing minefield, project

teams must understand that testing is an integral part

of the project rather than an adjunct to it. That is, the

success of one team enhances the success of the

others, towards the common goal of an effective and

efficient development process.

Remember:

 Wherever possible, address risk areas early, before

the time-critical “minefield”

 Anticipate the remaining “mines” so that their

impact can be limited.

