Clearing the Testing Minefield
By Donna O’Neill, IV&V Australia

Contact IV&V Australia Pty Ltd

details Suite 3A, 10-12 Clarke Street, Crows Nest, NSW, 2065

Phone +61 2 9957 6577; Fax +61 2 9957 1522

Email donnao@ivvaust.com.au; URL http://www.ivvaust.com.au

Abstract

As testers, we constantly have to dodge all sorts of obstacles that get in our way. We never have enough

time to do adequate testing; we rarely have clear requirements on which to base our tests; we battle for our
own test environment, and we beg for robust software that works well enough for us to do meaningful testing.
The list goes on. Our challenge is to ease our way through this minefield, so that we can maximise the time
we spend adding value to the project, and reduce the time we spend responding to non-productive diversions.

This paper will provide some strategies for meeting this challenge and achieving real value-added testing.

What is the testing minefield?

Software testers often spend much of their time
working in a critical phase at the end of the
development lifecycle. This phase lies between the
release of software from development and the final
system delivery to

Software
the customer. - drop
It is during this P;?gﬁ? l Delivery
phase that testing v v
is supposed to be ——

providing its major
contribution to the
project, yet it is also the time when the project is
under the most schedule pressure.

THE MINEFIELD

When not managed properly, this phase is like a
minefield, with hidden dangers everywhere.
However, when appropriately managed, the minefield
can be cleared and traversed in safety.

What dangers lie in the minefield?

The testing minefield is littered with obstacles that
conspire to make our job a very difficult one.

To start with, project planners rarely allocate
sufficient time to conduct adequate testing. This
situation worsens when the inevitable development
delays occur, which then eat into the fixed amount of
time allocated for testing.

Testers face the unenviable task of trying to get their
jobs done within an ever-reducing window of
opportunity, compromised by factors such as:

e The big bang approach to testing

e The folklore syndrome of requirements definition
e Fuzzy non-functional requirements

e Assumed quality of components

e The software surprise from developers

e The test environment set-up rush

e The shaky foundation of unstable software

e The path of least resistance.

These factors contribute to hurried, inadequate test
coverage, the release of low quality software, and
tester burn-out.

How can we clear the way (and deal
with the minor explosions)?

The key to efficient and effective testing is to use a
risk-based testing strategy, where you identify in
advance as many of these “gotchas” as possible. Be
open and honest with yourself and your management
about what you can and cannot achieve in the
allocated time and plan your test strategy accordingly.

By understanding the typical testing hazards, we can
foresee and manage them before we reach the
minefield, or at least reduce their impact when they
inevitably occur.

The goal is to do as many up-stream tasks in advance
as possible, to maximise the time you spend actually
testing. This way, you will maximise the
effectiveness of your testing by applying the testing at
the right time in the lifecycle, with the right people
doing the right testing (including developers).

Many of the testing “mines” are essentially
communication issues between test and development
and management. Increasing the visibility of the
testing process, and integrating testing activities
earlier into the development lifecycle, will promote a
greater understanding of the role of testing on
projects. This, in turn, will decrease the diversions
caused by ill-timed and non-productive activities and
thus maximise the likelihood that projects will get the
greatest benefit from the testing activities.

Avoid the big-bang approach

Unfortunately, it is not uncommon in the industry for
all testing to be left until the end of the project, just
prior to release.

These projects deny themselves the chance to build
quality into their product through the visibility and
control that early and ongoing feedback can provide.

Page 1 of 4

mailto:donnao@ivvaust.com.au;

Late testing can lead to overtime work for testers
(leading to burn-out and attrition), schedule chaos
when major defects are found at the last minute, or the
release of poor quality software.

The key to avoiding last-minute schedule chaos is to
remove as many tasks as possible from the minefield
phase by employing an incremental end to end testing
approach:

¢ Involve testers in the project early, during the
requirements review process, and start the test
plan immediately afterwards.

e Use an incremental development strategy with
short builds. Release working threads of
functionality to testers early and often.

o Use tester feedback to focus development tasks.

Effective metrics for testers to collect include:

e The number, nature, and severity of defects
found per functional area/test

o The cumulative number of defects raised vs
closed over time (and shown on a graph)

o The number of “fixed” defects that are actually
rejected during retesting.

Manage the folklore syndrome

When a development effort is based around poorly
defined or incomplete requirements, the project
becomes heavily reliant on the folklore and domain
knowledge that exists in the organisation.
Unfortunately, the keepers of this knowledge are
often reluctant to document it.

Testers, in an attempt to define their objectives, often
try to capture this information themselves, without the
budget for this unplanned work or the skills to do it
well.

Without clear requirements, tests tend to be inefficient
and poorly directed (rather than systematic) and tend
to demonstrate what the system does rather than
verify what it should do. Time is wasted in arguments
between teams and customers over differing views of
the product implementation and test results.

To minimise the impact of the folklore syndrome,
ensure that the requirements are well understood and
agreed, and that all test objectives are clearly defined,
before you enter the minefield phase.

To improve your approach to requirements:

e Encourage the development team to undertake a
systematic requirements gathering activity.

o Ensure that the specification has been reviewed by
all stakeholders (customers, developers, testers)
for completeness, clarity, testability, etc. A
requirements characteristics checklist can help to
focus this review activity.

To define clear test objectives:

o Identify the “test basis” for each level of testing,
so that all tests have clearly defined objectives (eg,
use cases, business rules, functional requirements).

e Use requirements tracing techniques to help focus
testing and ensure that all tests systematically
meet their objectives.

Tie down fuzzy non-functional requirements

Non-functional requirements such as quality attributes
(eg, reliability, availability, user friendliness, etc) and
performance objectives can be very difficult to
specify. This means that they are also very difficult to
test and objectively verify. At the same time, these
characteristics are usually very important to the
customer.

Testers, in their role of defacto customer liaison on
most projects, are the ones who bear the brunt of the
disagreements that this situation may cause. These
disagreements often occur at the end of the project
lifecycle (ie, in the testing minefield) and can cause
costly delays to product release and/or acceptance.

The obvious answer is to encourage the authors of the
specification to characterise these attributes in
quantifiable, testable terms. If they will not, or can
not, cooperate, then testers can appeal directly to the
customer, to gain agreement on acceptance criteria for
these requirements. Technical support staff may also
be a good source of this information, which can then
be used to determine the expected results of the test
procedures.

Do not assume quality components

For systems that are upgrades to existing systems or
are developed using bought-in/re-used components,
the testing strategy needs to consider the quality
history of the components. Once integrated into the
system, the project takes on the problems of these
external components.

Unfortunately, it is very difficult to really know for
certain the true status of re-used or bought-in
components. However, the impact of the problem can
be reduced:

e Component quality should be assessed prior to the
minefield phase, through analysis of prior test
results, analysis of assessment data that was
gathered during the component acquisition
process, software inspections, hands-on testing,
and feedback from other users.

e During system testing, target specific risk areas

such as interfaces and integrated system
behaviour.

Page 2 of 4

Spoil the software surprise

One of the biggest contributing factors to testing
mayhem is the reliance of the test group on other parts
of the organisation.

Testers need to know, in advance of receiving
software, the order in which functionality is being
developed so that they can plan their test development
schedule. Failure to receive some advance notice
forces testers to delay test execution while they
hastily prepare their tests, gather test equipment, and
wait for appropriately skilled testers to be available.

Communication is the key to ensuring that testers
have advance warning of the timing and contents of
software drops. It is far more effective for testers to
design their tests in advance of reaching the minefield
phase, to maximise the amount of time they can spend
running tests and providing feedback.

The software, when it is released, should contain
testable (vertical) slices of functionality so that testing
can commence immediately. If testers only receive
diverse bits of functionality that cannot be tested until
the system is fully integrated, they are forced into a
big-bang test approach or into wasting time on the
construction of throw-away test harnesses.

Avoid the setup rush

One of the most time consuming tasks facing testers is
the establishment of the test environment with the
required hardware, support software, tools and test
data. On many projects, however, testers only begin
this task upon receipt of the software for testing.

This means that valuable testing time is eroded away
by this set-up task. To maximise the testing time, the
test environment should be established by the time
test running is scheduled to start (at the very latest).
This will enable the testers to provide feedback to the
developers as quickly as possible.

Do not build on a shaky foundation

When developers do not conduct adequate unit
testing, the system that is released to the testers is
almost always unstable.

These systems have a tendency to crash unexpectedly
and display other such erratic behaviour. This is
commonly due to poor exception handling or low
level logic errors.

Erratic behaviour makes it very difficult to conduct
effective functional and system testing, and so the
product requirements get tested less thoroughly.
Furthermore, because of the differing focus of the
tests, the majority of design and code-level defects
will get through to the field regardless of any extra
effort applied to functional testing.

Developers must understand the critical and unique
role that unit testing plays in the testing lifecycle.

Prior to hand-over to the testers, the developers
should conduct unit tests (ideally preceded by design
and code reviews), using checklists to help focus the
activities and optimise their effectiveness. This should
ensure a robust base for independent requirements
testing.

Do not settle for the path of least resistance

il

Developers have a tendency to implement the “easier’
functionality first, to show early progress. Testers
have the same tendency, for the same reason.

This leaves the “harder” requirements until later,
when there is less time available to effectively deal
with them. Unfortunately, “hard” requirements are
harder because they are more complex and critical to
the operation of the system.

These requirements will take longer to implement and
they will be more prone to defects. They will also be
more difficult and time-consuming to test.

Project and test managers need to give themselves
more time to manage high priority/higher risk issues.
As early as possible in the development lifecycle:

o Prioritise requirements by (at least) technical and
interface complexity, mission or safety criticality,
and scope of use.

e Plan the development and testing schedule to
implement and test the higher priority
requirements as early as possible.

e Plan to review the tests (and corresponding area of
the design and code) of these requirements more
thoroughly.

e Assign more experienced staff to the higher
priority requirements.

Conclusions

To find a path through the testing minefield, it is
important to understand what tasks you can and
should start doing right from the beginning of the
project. Apply your effort throughout the
development lifecycle, so that by the time you receive
software for test:

e You have already reviewed and understood the
requirements

¢ You know what functionality you will be getting
to test, and when

e You have written tests based on clear objectives
(eg, requirements)

e You have set up the test environment with the
required hardware, software and test data

e The software is robust enough to make meaningful
test progress

e You understand the functional priorities, so that
you know where to concentrate your efforts if and
when time is running short.

Page 3 of 4

Until project teams understand how testing fits in with
the development lifecycle, and what the critical
dependencies between teams are, then the testing
minefield will remain a risky place to be.

To effectively clear the testing minefield, project
teams must understand that testing is an integral part
of the project rather than an adjunct to it. That is, the
success of one team enhances the success of the
others, towards the common goal of an effective and
efficient development process.

Remember:

o Wherever possible, address risk areas early, before
the time-critical “minefield”

e Anticipate the remaining “mines” so that their
impact can be limited.

Page 4 of 4

